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Integrated approach to the assessment of long range correlation in time series data

Govindan Rangarajdn
Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India

Mingzhou Dind
Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
(Received 22 September 1999; revised manuscript received 21 Januajy 2000

To assess whether a given time series can be modeled by a stochastic process possessing long range
correlation, one usually applies one of two types of analysis methods: the spectral method and the random walk
analysis. The first objective of this work is to show that each one of these methods used alone can be
susceptible to producing false results. We thus advocate an integrated approach which requires the use of both
methods in a consistent fashion. We provide the theoretical foundation of this approach and illustrate the main
ideas using examples. The second objective relates to the observation of long range anticofidélmtion
exponentH <1/2) in real world time series data. The very peculiar nature of such processes is emphasized in
light of the stringent condition under which such processes can occur. Using examples, we discuss the possible
factors that could contribute to the false claim of long range anticorrelations, and demonstrate the particular
importance of the integrated approach in this case.

PACS numbd(s): 05.40.Fb, 05.45.Tp

[. INTRODUCTION First, we derive the relationships between the power law ex-
ponents obtained from analyzing the time series using three

Random processes with long range power law correlatiomifferent tools—spectral, autocorrelation, and rescaled range
have been observed in a variety of fields including economanalyses. Then we demonstrate through examples that the
ics, geosciences, physics, and biolofl—9]. There are use of spectral method or the rescaled range method alone
roughly two types of tools used in assessing the presence ehn produce erroneous results. The autocorrelation method is
such correlations in time series data: spectral domain methot considered, since it is often difficult to use in practice.
ods represented by power spectrum analj/&j9], and ran-
dom walk methods in the time domain represented by the
rescaled range analysj4,9,10. Often these two types of
tools are applied singly to a given data set. In Sec. Il of this Consider a stationary stochastic process in discrete time,
paper, we point out the pitfalls of this approach through a{&}, Wwith (£)=0 and (£&5)=0?. Here( ) denotes en-
series of examples, and advocate an integrated approasemble average. If the autocorrelation functig(n)
which requires a consistent application of both types of=(&é+n) scales with the lag as
methods. 3

Long range correlations are characterized by a quantity C(n)~n"*# @)
called the Hurst exponerit. WhenH>1/2 the process is for largen, where 0< 8<1, then{&,} is called a long range

said to have positive long range correlation or persistence
. . rrel r long memory pr . Ther n for th
while H<1/2 means the process has long range anticorrel Correlated or long memory procefd] e reason for the

= H N
tion or antipersistence. Whet=1/2 we say that the process q;ttgrr Le:; $\|ls t?oat%(r?e) Cdaeszazs ici Sk.)"th)Bé ':rheaal?[gal'g(sn;c
has short range correlation. In Sec. lll of this paper WeII:Vof%his pap;r). B>1wi ! '

present the condition fad <1/2, and discuss how this strin The correlation structure of&} can be conveniently

gent condition can be corrupted in real world data. We then easured by the power spectrum, which is defineHlak
proceed to demonstrate the significance of the integrated aH] su y power Sspectrum, which is defi

A. Theoretical considerations

proach in this case, and analyze the reason underlying the o
many reported examples &f<1/2. S(f)=C(0)+2>, C(n)cog2xfn). 2
n=1
Il. AN INTEGRATED APPROACH TO THE ASSESSMENT _ o
OF LONG RANGE CORRELATION IN TIME SERIES If C(n) obeys the scaling relation in E¢l) then
In this section, we argue that an integrated approach is ~
required to assess long range correlations in times series. S(f)~221 n~#cog2xfn). ()
=

. ) In this case, we show below that
*Also associated with the Jawaharlal Nehru Center for Advanced

Scientific Research, Bangalore, India. Electronic address: S(f)y~f~« (4)
rangaraj@math.iisc.ernet.in
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The proof of this relationship betweenand 8 draws on  and
well known results in trigonometric series thed@?2]. Con-

sider the Taylor expansion of the function¥) °1, ! ! n
y P ) > sC(s)~ >, 31*B~f sl-B~n2-8, (11)
o0 s=1 s=1 1
1_ *(5*].: Aﬁ n' 5
1=y zo nY ® For 0< <1, this means
where by definition we havAj=1 and, forn=1, (R3)~n?"# (12
5 (6+1)(6+2)---(6+n) for largen. Conventionally, the mean square displacement is
An= n! characterized by the Hurst exponéttas
" (R3)~n?, (13
ree+1)°
where
This means
H=(2-p)12=(1+a)/2. (14
> oy =T (s+1)[(1-y) o 1-1]. (6)  Thus we obtain a set of consistent relations between the scal-
n=1 ing exponentsy, B, andH.
Replacing 6=— 8, y=re'?™", and O<r<1 in the above
B. Examples

equation leads to
As shown in Sec. Il A, the scaling exponents obtained
from spectral analysis and from random walk analysis must

be consistent through Edq14). We first provide three ex-

amples of two simulated correlated processes and one experi-

Lettingr—1 andf—0, and taking the real part, we obtain mental long range correlated process demonstrating this con-

sistency. Then we proceed to show that the spectral method

* or the random walk method used alone can be susceptible to

E n fcos2mnf~T(1—B)(2=f)P L cog w(1—B)/I2]. artifacts in the data and produce erroneous results. The com-
n=1 bination of the two methods can often detect such artifacts

(8) through inconsistencies with E¢L4).

Zl n~Are?™I~T(1-B)[(1-re? A 1-1]. (7)

- P ; The random walk analysis tool that we will use in this
Substituting th to Eq(3 Id
ubstituting this into E(3) yields paper is the rescaled range analydi®]. A brief description
S(f)y~2I'(1-B)(2mf)PLcog m(1—B)/2] of this method follows. For a given data sgi}, consider

the sumL(n,s)==7_,&,,;, whereL(n,s) can be regarded
as the position of a random walk aftersteps. Define the
trend-corrected rang@(n,s) of the random walk as

~fB1

Comparing the above with E¢4), we obtaina=1- 8.

Another way to assess the correlation structur¢&Qf is R(n,s)=maxXL(n,p)—pL(n,s)/s,1<p<s}
to convert the stationary process to a random walk by using )
partial SUMS,R,=¢&;, Ry=&1+&y, ..., Ry= &1+ &gt - - - —min{L(n,p)—pL(n,s)/s,1=p=s}. (15
+&,, ..., WhereR, is the position of the walker at time

et S?(n,s) denote the variance of the data §&t,;}7_, . If

the data has long range correlation, the average rescaled sta-
distic Q(s)=(R(n,s)/S(n,s)), (where( ), denotes the av-

ge oven) scales withs as a power law for largs,

The mean range of the random walk trajectory as a functio
of time bears specific relations with the scaling relafign.
(1)]. For the ease of analytical evaluation we consider th
mean square displacement as a measure of the range of tHE*
random walk, which is defined as

Q(s)~s", (16)
n n—-1
(R2)= > (£3)+2 > (n—s)C(s) whereH is the Hurst exponent introduced earlier. This power
i=1 s=1 law manifests itself as a straight line in the log-log plot of
n-1 n-1 Q(s) versuss. Spectral analysis was done using fast Fourier
—no?+2n> C(s)—-2> sC(s). 9) transform, and the Bartlett window was employd@].
s=1 s=1

1. Genuine long range Correlated processes
Let C(s) obey the scaling law in Eq1). The sums in the

. . To generate a process whose spectral density scales with
above equation are estimated as g P P Y

the frequency as a power lawf ~ %, we start with a realiza-

n-1 n . tion of a discrete zero mean white Gaussian noise process
> c(s)~> S_BNJ s Bnl-B (10) {&}, k=01, ... N-1, with varianceo?. Using Fourier

s=1 s=1 1 transform, we obtain
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FIG. 1. (a) Log-log plot of the rescaled range statist@(s)
against the window size for a true long range correlated process
with = 0.6, variance 0.25, and a long data set of 8192 poibjs.
Spectral density of the same data.

FIG. 2. (a) Log-log plot of the rescaled range statisti(s)
against the window sizs for a true long range correlated process
with «=0.6, variance 0.25, and a short data set of 256 po{hjs.
Spectral density of the same data.

N-1 hibits a power law behaviofby construction with a«=0.58
re= > énexp(—i2mnk/N), k=0,1,...N-1. [see Fig. 1b)]. Note that these values are consistent with Eq.
n=0 (14) [14].
17 Next we truncated the above time series data to obtain a

short data set with only 256 points. The results from rescaled
Next we multiplyT", by the factorf~*/?=(k/N) " to ob-  range and power spectrum analyses are shown in Figs. 2
tain the scaled quantity/, . (Both I'y andI'y_y are multi-  and 2b), respectively. Again these two results are consistent
plied by the same factor since we want a real-valued timeavith one another. This illustrates the fact that when you have
series) Finally we perform an inverse Fourier transform to a process with genuine long range correlation, even a short

obtain data set is often sufficient to reveal this property.
As a second example, we consider a different type of long
N-1 range correlated process — a fractional auto regressive inte-
Xn=1g kzo I, exp2mnk/N), n=0,1,...N-1. grated moving averagéARIMA) (0,d,0) procesq9] with

0=<d<0.5. It can be shown that the autocorrelation function
(18 c(n) for this process scales with lag as C(n)~n2d-1.
Thus from Eq.(14), B=1—-2d andH=d+0.5. The frac-
The discrete process,, by construction, has a mean power tional ARIMA(0,d,0) process ford=0.25 (H=0.75) was
spectrum that scales &s* with the frequency. The variabil- generated15] using its known autocovariance functi¢y.
ity around the mean spectrum is provided by the white noishe results from rescaled range analysis and spectral analysis

process. of this data, shown in Figs.(8 and 3b) are mutually con-
For our first example we generated a long range corresistent with one anothdcf. Eq. (14)].
lated process using the above construction with0.6 and The final example analyzes the data from a finger tapping

variance 0.25. The first data set has 8192 points. When wexperiment involving the human sensorimotor coordination
apply rescaled range analysis to this data, we obtain a Hur§?]. In this experiment, subjects cyclically tapped their index
exponentH=0.74[see Fig. 1a)]. The power spectrum ex- finger against a computer key in synchrony with a periodic
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F_IG. 3. (a)_ Log-log plot of the _rescaled range statist(s) FIG. 4. () Log-log plot of the rescaled range statis@(s)
against the window size for a fractional ARIMA(Od,0) process  against the window size for the synchronization error time series
with d=0.25. (b) Spectral density of the same data. data from the finger tapping experimetit) Spectral density of the
same data.

series of auditory beeps, delivered through a headphone. The

data collected were the synchronization or tapping errors de- \Wwhen the above process is subject to rescaled range
fined as the time between the computer recorded responggalysis, we obtain a Hurst exponent equal to §s&® Fig.
time and the metronome onseee Ref[7] for further de-  5(g)], indicating long range correlation where there is none.
tails). Here we analyze the synchronization error time serie®n the other hand, the power spectrum is [ite Fig. )],

from this experiment using rescaled range and spectral analymd does not show any power law behavior. This inconsis-
ses. The results, exhibited in Figga#and 4b), are again tency between the spectral method and rescaled range
mutually consistent demonstrating that the error time seriefhethod serves as a warning sign pointing to the need for

has long range correlatiog]. further more careful examination of the data.
As our second example, we consider the following autore-
2. Failures of the rescaled range analysis greesive(AR) process of order ongAR(1)] [11]:
In this section, we consider various situations where res-
caled range analysis used alone can give wrong results. As Xk=MXg-1+ &, K=12,..., (20

our first example, we consider the superposition of an expo- . . _ . .
nential trend over a white noise proceéSee, Ref[16] for ~ Where{{} is a zero mean white noise process with variance
more examples in this ar@aSpecifically, we generated the 0.25, and the coefficient is close to 1(0.9 in our casg The

following discrete process autocorrelation function of the process decays exponen-
tially: C(k)~\X. This means there is no long range correla-
X=exp(—0.0kK) + &, k=1,2,..., (190  tion in the x process. However, as shown in Figag the

rescaled range analysis of the above prodesith 1024
where {£,} is a white noise process with zero mean andpointg indicates the presence of long range correlation by
variance 0.16. A total of 8192 points were generated. ThiproducingH=0.76. The power spectrufirig. 6b)], on the
example can be realized in situations where the process uther hand, exhibits a flattening trend at low frequencies and
der investigation has an exponentially decaying transientontradicts the result from the rescaled range analysis. Even
and one does not discard the initial portion of the datsn-  if one misses this flattening trend and fits a straight line to
taining this transientwhile recording it. the remaining portion of the spectrum on a log-log scale, we
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FIG. 5. (a) Log-log plot of the rescaled range statist@(s)
against the window sizs for the superposition of an exponential
trend over a white noise procegb) Spectral density of the same
data.

FIG. 6. (@) Log-log plot of the rescaled range statist(s)
against the window sizs for an AR(1) process with\ =0.9. (b)
Spectral density of the same data.

the presence of long range correlation in the(&Rprocess
(with A =0.9) where there is none. We now apply surrogate
data analysis by shuffling the data randomly and reapplying
rescaled range analysis to the shuffled data sets. Figure 8
shows comparison between the Hurst exponent obtained
from the unshuffled original data with the average value of
Hurst exponents obtained from five realizations of randomly
shuffled data. We see that the shuffled data gives an average
NValue ofH around 0.5 as compared to 0.76 for the original
data. The two results are well separated. Therefore, the ap-
plication of surrogate data analysis would indicate that the

tion is further st thened b i | dat result obtained by rescaled range analysis of the original data
vation 1S further strengthened by analyzing a long data Sgk .q et indicating the presence of long range correlation.

(100000 points using rescaled range analysis. The reSUItSl'his is obviously a false conclusion. This example demon-

([jsee Fig. t;(c)] show IthatH anaprgachelﬁ a fvar:ge of 0.5 as th_e”strates that surrogate data analysis cannot be used indiscrimi-
ata set becomes longer. In Sec. Ill of this paper we wi nately for this type of problems.

discuss in more detail processes with the Hurst expoHent

obtain a value forr equal to— 1. Here the consistency re-
lation H~(1+ «)/2 is not satisfied, thus indicating the ab-
sence of long range correlations.

As our third example, we again consider an (ARpro-
cesg[cf. Eq. (20)], but this time with the coefficient close
to —1 (—0.9in our casg In this example, the application of
the rescaled range analysis gives a Hurst expoHen0.33
[Fig. 7(a)]. Naively, this Hurst value can be interpreted as a
indicator of long range “antipersistencd’l]. As before, the
power spectrum contradicts this res[dee Fig. )], and
shows a flattening trend in the low frequencies. This obser:

<1/2. ) .
We would like to make one point regarding the applica- 3. Failure of the power spectrum analysis
tion of the surrogate data analy$is7], which is often used Here we give an example where the use of power spec-

in combination with many analysis methods to strengthertrum analysis with inappropriate parameters can lead to
their results by demonstrating that a completely random prowrong results. If we investigate the genuine long range pro-
cess could not have exhibited the observed results. We showgess introduced above using the power spectrum analysis
below that this is not fool proof when used in conjunctionwith a Parzen window and/ =20 (that is, with a lot of
with rescaled range analysis. We have already seen in th@moothing [11], then we obtain the spectrum given in Fig. 9.
second example above that rescaled range analysis indicat€kis power spectrum shows a flat portion at low frequencies,
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FIG. 8. Comparison between the Hurst exponent obtained from
the unshuffled original data of the AR procesgwith A\ =0.9) and
the average value of Hurst coefficients obtained from five realiza-
tions of the above data, randomly shuffled.

the choice of input parameters. In this case the inconsisten-
cies between the two analysis methods will prompt more
careful examinations of the methods employed.

4. Failures of the combined use of rescaled range and power
spectrum analysis

All the above examples illustrate the fact that one should
not rely on a single tool to analyze time series data. An
integrated approach requiring the consistent use of several
available tools is more desirable. But even an integrated ap-
proach is not foolproof as we show below.

Consider a process that is the superposition of HRro-
cesses. In particular, we consider a variable that is the sum of
the following five independent processes:

Xk:)\xk—l+ gk! k:1,2, A (21)
where the coefficienta. for the individual processes are
given by 0.99, 0.9, 0.4, 0.2, and 0.1, and the variances are
given by 0.05, 0.1, 0.3, 0.4, and 0.5, respectively. In this
case, for a relatively short data set of 256 points, both the
rescaled range and power spectrum analyses indicate the

1 T T T

Power
o
T
1

against the window size for the same process but with 100 000
points.

indicating wrongly the absence of long range correlations.
This is not a problem with power spectrum analysis per se,
but is an example of using it with inappropriate parameters.
We do not run into such problems with rescaled range analy-
sis, since it does not have such free parameters that can k
wrongly “tuned.” The above example is not as artificial as it

"0.0001

1
0.001

1
0.01
Frequency

seems, since canned power spectrum analysis routines areFIG. 9. Spectral density of the genuine long range correlated
often used in data analysis without proper thought going intgrocess considered in Fig. 1 using a Parzen window ith 20.
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100 : : consistent positive results from both these analyses at least

indicates the presence of multiple time scales in the data set.
@

Ill. CONDITION FOR H<1/2 AND ITS IMPLICATIONS
FOR REAL WORLD DATA ANALYSIS

Q(s)
5

Slope = 0.96

As mentioned earlier, rescaled range analy%i§] is of-
ten used in determining the presence of long range correla-
tion in data sets. Results of rescaled range analyses are typi-
cally quantified using the Hurst exponddt(0<H<1). In
. . principle, analysis of a data set can lead to any valuél of
1 10 100 1000 between 0 and 1. In this section, we will argue that processes
with H<1/2 are rather special, in that they must satisfy the
condition that the sum of the autocorrelation function be
zero. Many physical processes are known to meet this con-
dition [4]. However, this condition can be easily corrupted in
real world data where noise unrelated to the physical process
enters the measurement. We demonstrate the importance of
the integrated approach in the proper diagnosis of processes
with H<1/2. We also discuss a common way in which a
misjudgment of long range anticorrelation can occur. In this

regard we identify the three contributing factof®) the vari-

ootk T able being recorded is not fundamengsde belowy, (2) the
data set is short, an@) only a random walk type of analysis
is employed.

01 |

0.01

Power

0.0001
0.00

Frequency

1000 . . . , A. Condition for H<1/2

© Refer to Eq.(9). Suppose tha€(s)~s #. When 0<p
<1, we showed that both the second and third terms in the
above equation diverge and scale wittas ~n?~#. There-
fore, (R%) scales wit as~n?~# for largen, and this leads
Siope =054 to H>1/2[cf. Eq.(14)]. For 8> 2 [that is, for anyC(s) that
decays faster tha@(s)~s 2], both sums in the above equa-
tion converge, and we generally obtai~ 1/2.

Thus the only remaining range gfis 1<8<2. For such
B the sum=Z_,C(s) is finite. (Note that, strictly speaking,
this type of process can no longer be termed a long memory
, , , , process based on the definition in Sec. Il A. But, since it has
! 1 100 1000 10000 00000 the potential of givingH<1/2, we will still use the term
“long range correlation.) Therefore the first two terms
scale as~n'. The sum="-1sC(s) in the third term is

100 |

Qls)

FIG. 10. (a) Log-log plot of the rescaled range statis€s)
against the window sizefor a superposition of five AR process. ~ €valuated to be

(b) Spectral density of the same data). Q(s) versuss for a much n—1
longer data set from the same process. E sC(s)~n2- A 22)
= '

presence of long range correlation in the date Figs. 1@&)
and 1@b), respectively by yielding H=0.96 anda=0.82.

Clearly, the results are consistent with=(1+)/2. But, \\here (2- g)<1. This means that the rate of divergence of
for a much longer d_ata set of 50000 points we see the trugq third term is slower than the first two terms. Therefore, in
Hurst exponent oH=0.5 in Fig. 1Qc). the largen limit (R?)~n, we would still observeH=1/2.

This example shows that even the superposition of a feW o o0y sityation when this will not happen occurs when
AR(1) processes can mimic a long range correlated proces;

for short data sets. Theoretically it is known that the super-ﬁe following equation is precisely satisfied:
position of an infinite number of AR) processes can, in
some cases, give rise to a long range correlated prot8ks o
Even though an integrated approach using both rescaled 02+22 C(s)= 2 C(s)=0. (23)
range and power spectrum analyses can give spurious results, $=1

S=

S=—
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rescaled range and spectral analyses are mutually consistent
@ in this case, since the application of Et) gives aH value
of 0.25.

Now we consider the effect of additive noise on the same
data set. When noise is added, E2@) is no longer strictly
satisfied. Hence we would expect the Hurst exponent of the
process to asymptotically approa¢h=0.5 for long data
Slope - 028 sets. This is borne out by our numerical simulations. We start
with the true long range correlated process described above
(H=0.25), and add Gaussian white noise to the data with
variance 0.01. This simulates the effect of noisy measure-
, ) , ment in experiments. Figure (@ shows the results of res-

! " 1% 1000 10000 caled range analysis applied to the above process with
262,144 points. We see thht asymptotically tends to 0.5.
- O As the variance of the added noise is increased Hke0.5
value is reached even faster. However, all is not lost. The
integrated approach allows us to approximately recover the
true process hidden by the noise. We start by truncating the
data set which prevents the asymptotic limit fidr being
reached. Figs. 1B) and 12c) display the results of applying
the integrated approach to the truncated data set with 8192
points[all other parameter values remain the same as in Fig.
12(a)]. We obtain anH value of 0.34 from rescaled range
analysis, and the spectral analysis is consistent with this
value. This consistency tells us that the data represent a true
- , ) , long range correlated procedbe H value obtained is higher
0000t 000t Frequanoy o ' than that for the true process because of the added hise.
comment that this consistency is in marked contrast to what

FIG. 11. (a) Log-log plot of the rescaled range statis@(s)  was observed for the AR) process withh = — 0.9 (see Sec.
against the window size for a true long range correlated process || B). There, even though thé value was 0.33 for small data
with = —0.5, variance 0.25, and a long data &#92 point. (b)  sets and rose téi=0.5 for large data sets, the results of
Spectral density of the same data. spectral analysis were completely inconsistent with this. This

led us to conclude that there was no true long range corre-
In this case the first two terms i6R2) drop out giving lated process in that example. The above examples again
<R§)~n2‘ﬁ. Therefore, we obtaitd=(2— 8)/2, which is  demonstrate that the integrated approach is very useful in
smaller than 1/2. revealing the true nature of a process represented by time

It is clear that forH <1/2 to occur the process must meet series data.

a very stringent conditiofiEq. (23)]. It has been shown that
many physical systems satisfy this conditiel. But, when
such a physical system is subject to measurement, noise is an
inevitable factor. For the noisy measurement it is likely that

the equality in Eq(23) no longer holds. The implication is . .
. ” analysis of real world data, using the method of random walk
that in the long run one may obseri=1/2, and therefore alone, yieldH<1/2. The examples in Sec. IIB show the

not be able to correctly identify the underlying process. Inshortcomin of Using iust one tvpe of analvsis method. Upon
what follows we show that the integrated approach advos; gorusing| e byp Y - 2P
further examination we realize that there is a common thread

cated in Sec. Il is again an essential t'ool in revealing strongn these reports that has to do with the fact that the data
clues as to the true nature of the physical process. Moreover

, . : - analyzed do not come from a fundamental process which we
we will show that the integrated approach is also indispens-,

: . . L discuss below.
able in guarding against misjudgmenttét<1/2 for systems

where this is not true.

Q(s)

Slope = 0.51

Power

C. Possible causes for false identification dfl <1/2

In the literature one often comes across reports where

1. Notion of a fundamental process and data differencing

B. Integrated approach to noisyH <1/2 data Consider a stationary proce$g,}. By definition a sta-

For a genuineH < 1/2 process, Eq(14) still holds, albeit  tionary process is not diffusive. In other words?) is a
a will be a negative number. We generated & process constant. Consider the partial S\Ry==_,&,. If (R2) in-
artificially using the procedure in Sec. Il B 1. A value @f creases withn, that is,R, is a diffusive process, we say that
=—-0.5 was used. When the data are subject to rescalefd,} is a fundamental process. If the time series data coming
range analysis, we obtain a value bf=0.28 [see Fig. from a fundamental process are subject to random walk type
11(a)]. The spectral analysis gives a power law curve withof analysis such as the rescaled range analysis, it can be
a=—0.5 as expecte[Fig. 11(b)]. We note the results of the trusted to correctly assess the corresponding Hurst exponent.
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FIG. 12. (a) Log-log plot of the rescaled range statis@s) FIG. 13. (@) Log-log plot of the rescaled range statis@{(s)
against the window size for a true long range correlated process a9ainst the window size for a differenced Gaussian white noise
corrupted by added white noise with= — 0.5, variance 0.25, and Process with 1024 data point) Same as above but with 40 000
262 144 points. The variance of added white noise is Ql)1Same ~ data points(c) Spectral density of the data (@).
as above but with 8192 pointéc) Spectral density of the same
process with 8192 points.
for trend removal[11]. Second, the measured physical vari-
able is a derivative of another fundamental variable. We be-
lieve that the use of differenced data, in combination with a
rescaled range type of analysis, underlies some of the re-

ta}l process, since Its .parual. sums givéy Wh'Ch.'S not ported cases dfi <1/2. Below we demonstrate this point by
diffusive. This means if we input data from a differenced examples

process into the rescaled range type of random walk analysis,
we will not be able to assess the correlation properties of the
original process, and possibly even be fooled by the appear-
ance of the rescaled range plste below Consider a Gaussian white noise procgss. The partial
Differenced data can arise in practice in a number ofsums of this process yield a diffusive Brownian motion with
ways. First, differencing is a commonly applied techniquea Hurst exponent equal to 1/2. Suppose what is being mea-

A differenced process refers to a procgsg} which is
obtained byzy,= &1 — & . Clearly,{ %} is not a fundamen-

2. Gaussian white noise
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s FIG. 15. (a) Log-log plot of the rescaled range statis@qs)

1000 . . . : against the window size for the interresponse interval time series
data from the finger tapping experimeftt) Spectral density of the
same data.

(©)

data set(40 000 pointy we observe that the slope of 0.12
that we had seen earlier is only a transient effeete Fig.

Stope = 0.54 13(b)]. It can be shown that the true slope goes to zero as the
time lags increases.

The H value of 0.12 obtained for the differenced data set
R E of 1024 points can also be easily rejected by the integrated
approach. Subjecting the same data set to the spectral analy-
sis yieldsa= —1.95[Fig. 13c)]. This value is totally incon-
sistent with thea=—0.76 predicted by Eq(14) based on

- s - - H=0.12. This inconsistency should be used as a clue to
' ° e, 10000 fooeee further examine the nature of the data set.

FIG. 14. (a) Log-log plot of the rescaled range statis@qs)
against the window sizefor the velocity variablex of a Langevin
process withh =5 and 250 data point¢b) Same as above but with In this section, we consider a more physical example—the

60 000 data pointsic) Log-log plot of the rescaled range statistic | angevin equation. The Langevin process that we studied is
Q(s) against the window sizs for the position variablex of a
Langevin process with =5 and 250 data points. X=— X+ (1) (24)

100 E

Qfs)

1

3. Langevin equation

sured is not§, but the differenced variabley,= &, 1— &. . . ) .

To see the effect of this, a Gaussian white noise progggs Where £(t) is a white noise process with zero mean and
with zero mean and variance 0.25 was first generated. If thgariance 0.25 and.=5. The above stochastic differential
rescaled range analysis is performed{of}, the result is ~€guation was integrated using an efficient algorifti9|. _
shown in Fig. 18). The data length is 1024 points. If we Suppose that the varlab_le being measured is the velocity
force a linear fit to the end part of the log-log plot, we ob-X, and successive values rfby the numerical integration
serve a Hurst exponent equal to about 0.12. However, thischeme constitute our data set. The rescaled range analysis
exponent is not a reflection of the process but is caused bgpplied to a short data set of 250 points yields a Hurst expo-
the finite size of the data set. If we analyze a much longenent equal to 0.18see Fig. 148)]. On the other hand, if the
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size of the data set is increased to 60 000 points, the value of IV. SUMMARY
H becomes nearly zero for largevalues[Fig. 14b)].
Theoretically, it can be shown that after an initial tran-
sient, is a stationary fundamental process. To demonstra
this we apply rescaled range analysis to the values d

Suppose that the autocorrelation functiéfs) for a sta-
{ionary process scales withas C(s)~s~#. Depending on
fie values of3 and the behavior aE{=" ,C(s) we have the
. . following classification for the procesél) if 0<8<1, we
ﬂl"s case, even for_ short data sets,d_vve (;)b;amha vaILIdhof have 1/2<H<1, and the process is said to have long range
close to 0'5[.396.':'9' 1¢)]' as predicted by theory. T € persistent correlation or long memof9]. (2) If 1<B<2
regult seen in Fig. 14) is th_erefore a consequence »f and3$="_C(s)=0, we have B<H<1/2 and the process is
being an overdifferenced variable. said to have long range antipersistent correlation or anticor-
relation. (3) If B>1 and=="_C(s)#0 we haveH=1/2,
and the process is said to have short range correlation. It is
Generally, we suggest that whenH<1/2 is obtained Worth noting in this classification processes with <2
from a random walk type of ana|ysisy one should also percan be classified as either having Iong rangg anticorrelation
form a spectral analysis on the same data set. If the result & short range correlation depending whetBgr” .C(s) is
inconsistent with Eq(14), then one should conclude that this zero. We preserve the long range anticorrelation terminol-
data set is not from a fundamental process and partial sunfgy, in keeping with the traditional naming of such pro-

of this data set should instead be considered for an analysf€sses. The main goal of this work has been to demonstrate
of the correlation properties. the importance of the integrated approach, combining both

As an example, we again consider the finger tapping exSPectral and random walk analyses, to the assessment of cor-
periment[7] described in Sec. Il B. But now we analyze the relatlpn behavior in time series data. We showed that thg
interresponse intervaldRI’s) instead of the synchronization consistent use O_f bc_)th spect_r al and random walk analy§es IS
errors. The IRI's can be obtained from the synchronizatiorf'Ot only _essentlal in revealing the true nature of a given
error data by differencing if7] and is itself an important process, it can als_o prevent th_e false conclusion of long range
physiological variable. Rescaled range analysis of this IRFor_reIatlon reSL_JItlng f.“’m. artifacts or wrong measurement
time series data appears to give a valuéief0.25[see Fig. variables combined with just one type of analysis method.
15(a)]. But this is an artifact of the finite data size. This can
be seen by performing a spectral analysis on the same IRI
data[see Fig. 18)]. We see that this gives results inconsis-  This work was supported by US ONR Grant No. NO0014-
tent with Eq.(14). Thus theH value obtained in Fig. 18) is  99-1-0062. G.R. thanks the Center for Complex Systems and
a consequence of the IRI being an overdifferenced variableBrain Sciences, Florida Atlantic University, where this work
combined with finite data size and only one type of methodwas performed, for hospitality.

4. Finger tapping data
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