
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Integrated approach to the assessment of long range correlation in time series data
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To assess whether a given time series can be modeled by a stochastic process possessing long range
correlation, one usually applies one of two types of analysis methods: the spectral method and the random walk
analysis. The first objective of this work is to show that each one of these methods used alone can be
susceptible to producing false results. We thus advocate an integrated approach which requires the use of both
methods in a consistent fashion. We provide the theoretical foundation of this approach and illustrate the main
ideas using examples. The second objective relates to the observation of long range anticorrelation~Hurst
exponentH,1/2) in real world time series data. The very peculiar nature of such processes is emphasized in
light of the stringent condition under which such processes can occur. Using examples, we discuss the possible
factors that could contribute to the false claim of long range anticorrelations, and demonstrate the particular
importance of the integrated approach in this case.

PACS number~s!: 05.40.Fb, 05.45.Tp
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I. INTRODUCTION

Random processes with long range power law correla
have been observed in a variety of fields including econo
ics, geosciences, physics, and biology@1–9#. There are
roughly two types of tools used in assessing the presenc
such correlations in time series data: spectral domain m
ods represented by power spectrum analysis@1,9#, and ran-
dom walk methods in the time domain represented by
rescaled range analysis@1,9,10#. Often these two types o
tools are applied singly to a given data set. In Sec. II of t
paper, we point out the pitfalls of this approach through
series of examples, and advocate an integrated appr
which requires a consistent application of both types
methods.

Long range correlations are characterized by a quan
called the Hurst exponentH. When H.1/2 the process is
said to have positive long range correlation or persisten
while H,1/2 means the process has long range anticorr
tion or antipersistence. WhenH51/2 we say that the proces
has short range correlation. In Sec. III of this paper
present the condition forH,1/2, and discuss how this strin
gent condition can be corrupted in real world data. We th
proceed to demonstrate the significance of the integrated
proach in this case, and analyze the reason underlying
many reported examples ofH,1/2.

II. AN INTEGRATED APPROACH TO THE ASSESSMENT
OF LONG RANGE CORRELATION IN TIME SERIES

In this section, we argue that an integrated approac
required to assess long range correlations in times se
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First, we derive the relationships between the power law
ponents obtained from analyzing the time series using th
different tools—spectral, autocorrelation, and rescaled ra
analyses. Then we demonstrate through examples tha
use of spectral method or the rescaled range method a
can produce erroneous results. The autocorrelation metho
not considered, since it is often difficult to use in practice

A. Theoretical considerations

Consider a stationary stochastic process in discrete ti
$jk%, with ^jk&50 and ^jk

2&5s2. Here ^ & denotes en-
semble average. If the autocorrelation functionC(n)
5^jkjk1n& scales with the lagn as

C~n!;n2b ~1!

for largen, where 0,b,1, then$jk% is called a long range
correlated or long memory process@9#. The reason for the
latter term is thatC(n) decays so slowly that(n51

N C(n)
diverges asN→`. ~The case ofb.1 will be treated in Sec.
III of this paper.!

The correlation structure of$jk% can be conveniently
measured by the power spectrum, which is defined as@11#

S~ f !5C~0!12(
n51

`

C~n!cos~2p f n!. ~2!

If C(n) obeys the scaling relation in Eq.~1! then

S~ f !'2(
n51

`

n2b cos~2p f n!. ~3!

In this case, we show below that

S~ f !; f 2a ~4!

for small f wherea512b.

d
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4992 PRE 61GOVINDAN RANGARAJAN AND MINGZHOU DING
The proof of this relationship betweena andb draws on
well known results in trigonometric series theory@12#. Con-
sider the Taylor expansion of the function (12y)2d21,

~12y!2d215 (
n50

`

An
dyn, ~5!

where by definition we haveA0
d51 and, forn>1,

An
d5

~d11!~d12!•••~d1n!

n!

'
nd

G~d11!
.

This means

(
n51

`

ndyn'G~d11!@~12y!2d2121#. ~6!

Replacingd52b, y5rei2p f , and 0<r ,1 in the above
equation leads to

(
n51

`

n2br nei2pn f'G~12b!@~12rei2p f !b2121#. ~7!

Letting r→1 and f→0, and taking the real part, we obtai

(
n51

`

n2b cos 2pn f'G~12b!~2p f !b21 cos@p~12b!/2#.

~8!

Substituting this into Eq.~3! yields

S~ f !'2G~12b!~2p f !b21 cos@p~12b!/2#

; f b21.

Comparing the above with Eq.~4!, we obtaina512b.
Another way to assess the correlation structure of$jk% is

to convert the stationary process to a random walk by us
partial sums,R15j1 , R25j11j2 , . . . , Rn5j11j21•••

1jn , . . . , whereRn is the position of the walker at timen.
The mean range of the random walk trajectory as a func
of time bears specific relations with the scaling relation@Eq.
~1!#. For the ease of analytical evaluation we consider
mean square displacement as a measure of the range o
random walk, which is defined as

^Rn
2&5(

i 51

n

^j i
2&12(

s51

n21

~n2s!C~s!

5ns212n(
s51

n21

C~s!22(
s51

n21

sC~s!. ~9!

Let C(s) obey the scaling law in Eq.~1!. The sums in the
above equation are estimated as

(
s51

n21

C~s!;(
s51

n

s2b;E
1

n

s2b;n12b ~10!
g

n

e
the

and

(
s51

n21

sC~s!;(
s51

n

s12b;E
1

n

s12b'n22b. ~11!

For 0,b,1, this means

^Rn
2&;n22b ~12!

for largen. Conventionally, the mean square displacemen
characterized by the Hurst exponentH as

^Rn
2&;n2H, ~13!

where

H5~22b!/25~11a!/2. ~14!

Thus we obtain a set of consistent relations between the s
ing exponentsa, b, andH.

B. Examples

As shown in Sec. II A, the scaling exponents obtain
from spectral analysis and from random walk analysis m
be consistent through Eq.~14!. We first provide three ex-
amples of two simulated correlated processes and one ex
mental long range correlated process demonstrating this
sistency. Then we proceed to show that the spectral me
or the random walk method used alone can be susceptib
artifacts in the data and produce erroneous results. The c
bination of the two methods can often detect such artifa
through inconsistencies with Eq.~14!.

The random walk analysis tool that we will use in th
paper is the rescaled range analysis@1,5#. A brief description
of this method follows. For a given data set$j i%, consider
the sumL(n,s)5( i 51

s jn1 i , whereL(n,s) can be regarded
as the position of a random walk afters steps. Define the
trend-corrected rangeR(n,s) of the random walk as

R~n,s!5max$L~n,p!2pL~n,s!/s,1<p<s%

2min$L~n,p!2pL~n,s!/s,1<p<s%. ~15!

Let S2(n,s) denote the variance of the data set$jn1 i% i 51
s . If

the data has long range correlation, the average rescaled
tistic Q(s)5^R(n,s)/S(n,s)&n ~where^ &n denotes the av-
erage overn) scales withs as a power law for larges,

Q~s!;sH, ~16!

whereH is the Hurst exponent introduced earlier. This pow
law manifests itself as a straight line in the log-log plot
Q(s) versuss. Spectral analysis was done using fast Four
transform, and the Bartlett window was employed@13#.

1. Genuine long range Correlated processes

To generate a process whose spectral density scales
the frequencyf as a power lawf 2a, we start with a realiza-
tion of a discrete zero mean white Gaussian noise proc
$jk%, k50,1, . . . ,N21, with variances2. Using Fourier
transform, we obtain
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Gk5 (
n50

N21

jn exp~2 i2pnk/N!, k50,1, . . . ,N21.

~17!

Next we multiplyGk by the factorf 2a/25(k/N)2a/2 to ob-
tain the scaled quantityGk8 . ~Both Gk and GN2k are multi-
plied by the same factor since we want a real-valued ti
series.! Finally we perform an inverse Fourier transform
obtain

xn5
1

N (
k50

N21

Gk8 exp~2pnk/N!, n50,1, . . . ,N21.

~18!

The discrete processxn , by construction, has a mean pow
spectrum that scales asf 2a with the frequency. The variabil-
ity around the mean spectrum is provided by the white no
process.

For our first example we generated a long range co
lated process using the above construction witha50.6 and
variance 0.25. The first data set has 8192 points. When
apply rescaled range analysis to this data, we obtain a H
exponentH50.74 @see Fig. 1~a!#. The power spectrum ex

FIG. 1. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a true long range correlated proce
with a50.6, variance 0.25, and a long data set of 8192 points.~b!
Spectral density of the same data.
e

e

-

e
rst

hibits a power law behavior~by construction! with a50.58
@see Fig. 1~b!#. Note that these values are consistent with E
~14! @14#.

Next we truncated the above time series data to obtai
short data set with only 256 points. The results from resca
range and power spectrum analyses are shown in Figs.~a!
and 2~b!, respectively. Again these two results are consiste
with one another. This illustrates the fact that when you ha
a process with genuine long range correlation, even a sh
data set is often sufficient to reveal this property.

As a second example, we consider a different type of lo
range correlated process – a fractional auto regressive in
grated moving average~ARIMA ! (0,d,0) process@9# with
0<d,0.5. It can be shown that the autocorrelation functio
C(n) for this process scales with lagn as C(n);n2d21.
Thus from Eq.~14!, b5122d and H5d10.5. The frac-
tional ARIMA(0,d,0) process ford50.25 (H50.75) was
generated@15# using its known autocovariance function@9#.
The results from rescaled range analysis and spectral anal
of this data, shown in Figs. 3~a! and 3~b! are mutually con-
sistent with one another@cf. Eq. ~14!#.

The final example analyzes the data from a finger tappi
experiment involving the human sensorimotor coordinatio
@7#. In this experiment, subjects cyclically tapped their inde
finger against a computer key in synchrony with a period

FIG. 2. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a true long range correlated proces
with a50.6, variance 0.25, and a short data set of 256 points.~b!
Spectral density of the same data.
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4994 PRE 61GOVINDAN RANGARAJAN AND MINGZHOU DING
series of auditory beeps, delivered through a headphone.
data collected were the synchronization or tapping errors
fined as the time between the computer recorded resp
time and the metronome onset~see Ref.@7# for further de-
tails!. Here we analyze the synchronization error time se
from this experiment using rescaled range and spectral an
ses. The results, exhibited in Figs. 4~a! and 4~b!, are again
mutually consistent demonstrating that the error time se
has long range correlations@7#.

2. Failures of the rescaled range analysis

In this section, we consider various situations where r
caled range analysis used alone can give wrong results
our first example, we consider the superposition of an ex
nential trend over a white noise process.~See, Ref.@16# for
more examples in this area.! Specifically, we generated th
following discrete process

xk5exp~20.01k!1jk , k51,2, . . . , ~19!

where $jk% is a white noise process with zero mean a
variance 0.16. A total of 8192 points were generated. T
example can be realized in situations where the process
der investigation has an exponentially decaying transi
and one does not discard the initial portion of the data~con-
taining this transient! while recording it.

FIG. 3. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a fractional ARIMA(0,d,0) process
with d50.25. ~b! Spectral density of the same data.
he
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When the above process is subject to rescaled ra
analysis, we obtain a Hurst exponent equal to 0.75@see Fig.
5~a!#, indicating long range correlation where there is no
On the other hand, the power spectrum is flat@see Fig. 5~b!#,
and does not show any power law behavior. This incon
tency between the spectral method and rescaled ra
method serves as a warning sign pointing to the need
further more careful examination of the data.

As our second example, we consider the following auto
greesive~AR! process of order one@AR~1!# @11#:

xk5lxk211jk , k51,2, . . . , ~20!

where$jk% is a zero mean white noise process with varian
0.25, and the coefficientl is close to 1~0.9 in our case!. The
autocorrelation function of thex process decays exponen
tially: C(k);lk. This means there is no long range corre
tion in the x process. However, as shown in Fig. 6~a!, the
rescaled range analysis of the above process~with 1024
points! indicates the presence of long range correlation
producingH50.76. The power spectrum@Fig. 6~b!#, on the
other hand, exhibits a flattening trend at low frequencies
contradicts the result from the rescaled range analysis. E
if one misses this flattening trend and fits a straight line
the remaining portion of the spectrum on a log-log scale,

FIG. 4. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for the synchronization error time serie
data from the finger tapping experiment.~b! Spectral density of the
same data.
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PRE 61 4995INTEGRATED APPROACH TO THE ASSESSMENT OF . . .
obtain a value fora equal to21. Here the consistency re-
lation H'(11a)/2 is not satisfied, thus indicating the ab
sence of long range correlations.

As our third example, we again consider an AR~1! pro-
cess@cf. Eq. ~20!#, but this time with the coefficientl close
to 21 (20.9 in our case!. In this example, the application of
the rescaled range analysis gives a Hurst exponentH50.33
@Fig. 7~a!#. Naively, this Hurst value can be interpreted as a
indicator of long range ‘‘antipersistence’’@1#. As before, the
power spectrum contradicts this result@see Fig. 7~b!#, and
shows a flattening trend in the low frequencies. This obs
vation is further strengthened by analyzing a long data
~100 000 points! using rescaled range analysis. The resu
@see Fig. 7~c!# show thatH approaches a value of 0.5 as th
data set becomes longer. In Sec. III of this paper we w
discuss in more detail processes with the Hurst exponenH
,1/2.

We would like to make one point regarding the applica
tion of the surrogate data analysis@17#, which is often used
in combination with many analysis methods to strength
their results by demonstrating that a completely random p
cess could not have exhibited the observed results. We sh
below that this is not fool proof when used in conjunctio
with rescaled range analysis. We have already seen in
second example above that rescaled range analysis indic

FIG. 5. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for the superposition of an exponentia
trend over a white noise process.~b! Spectral density of the same
data.
n
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the presence of long range correlation in the AR~1! process
~with l50.9) where there is none. We now apply surroga
data analysis by shuffling the data randomly and reapplyi
rescaled range analysis to the shuffled data sets. Figur
shows comparison between the Hurst exponent obtain
from the unshuffled original data with the average value
Hurst exponents obtained from five realizations of random
shuffled data. We see that the shuffled data gives an aver
value of H around 0.5 as compared to 0.76 for the origin
data. The two results are well separated. Therefore, the
plication of surrogate data analysis would indicate that t
result obtained by rescaled range analysis of the original d
is correct, indicating the presence of long range correlatio
This is obviously a false conclusion. This example demo
strates that surrogate data analysis cannot be used indiscr
nately for this type of problems.

3. Failure of the power spectrum analysis

Here we give an example where the use of power sp
trum analysis with inappropriate parameters can lead
wrong results. If we investigate the genuine long range p
cess introduced above using the power spectrum analy
with a Parzen window andM520 ~that is, with a lot of
smoothing! @11#, then we obtain the spectrum given in Fig. 9
This power spectrum shows a flat portion at low frequencie

FIG. 6. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for an AR~1! process withl50.9. ~b!
Spectral density of the same data.
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4996 PRE 61GOVINDAN RANGARAJAN AND MINGZHOU DING
indicating wrongly the absence of long range correlation
This is not a problem with power spectrum analysis per s
but is an example of using it with inappropriate parameter
We do not run into such problems with rescaled range ana
sis, since it does not have such free parameters that can
wrongly ‘‘tuned.’’ The above example is not as artificial as i
seems, since canned power spectrum analysis routines
often used in data analysis without proper thought going in

FIG. 7. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for an AR~1! process withl520.9,
variance 0.25, and 1024 data points.~b! Spectral density of the
same data.~c! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for the same process but with 100 000
points.
.
e,
s.
y-
be

are
o

the choice of input parameters. In this case the inconsis
cies between the two analysis methods will prompt m
careful examinations of the methods employed.

4. Failures of the combined use of rescaled range and power
spectrum analysis

All the above examples illustrate the fact that one sho
not rely on a single tool to analyze time series data.
integrated approach requiring the consistent use of sev
available tools is more desirable. But even an integrated
proach is not foolproof as we show below.

Consider a process that is the superposition of AR~1! pro-
cesses. In particular, we consider a variable that is the sum
the following five independent processes:

xk5lxk211jk , k51,2, . . . , ~21!

where the coefficientsl for the individual processes ar
given by 0.99, 0.9, 0.4, 0.2, and 0.1, and the variances
given by 0.05, 0.1, 0.3, 0.4, and 0.5, respectively. In t
case, for a relatively short data set of 256 points, both
rescaled range and power spectrum analyses indicate

FIG. 8. Comparison between the Hurst exponent obtained f
the unshuffled original data of the AR~1! process~with l50.9) and
the average value of Hurst coefficients obtained from five real
tions of the above data, randomly shuffled.

FIG. 9. Spectral density of the genuine long range correla
process considered in Fig. 1 using a Parzen window withM520.
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presence of long range correlation in the data@see Figs. 10~a!
and 10~b!, respectively# by yielding H50.96 anda50.82.
Clearly, the results are consistent withH'(11a)/2. But,
for a much longer data set of 50 000 points we see the
Hurst exponent ofH50.5 in Fig. 10~c!.

This example shows that even the superposition of a
AR~1! processes can mimic a long range correlated proc
for short data sets. Theoretically it is known that the sup
position of an infinite number of AR~1! processes can, in
some cases, give rise to a long range correlated process@18#.
Even though an integrated approach using both resc
range and power spectrum analyses can give spurious re

FIG. 10. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a superposition of five AR~1! process.
~b! Spectral density of the same data.~c! Q(s) versuss for a much
longer data set from the same process.
e

w
ss
r-

ed
lts,

consistent positive results from both these analyses at l
indicates the presence of multiple time scales in the data

III. CONDITION FOR HË1Õ2 AND ITS IMPLICATIONS
FOR REAL WORLD DATA ANALYSIS

As mentioned earlier, rescaled range analysis@1,5# is of-
ten used in determining the presence of long range corr
tion in data sets. Results of rescaled range analyses are
cally quantified using the Hurst exponentH (0,H,1). In
principle, analysis of a data set can lead to any value oH
between 0 and 1. In this section, we will argue that proces
with H,1/2 are rather special, in that they must satisfy t
condition that the sum of the autocorrelation function
zero. Many physical processes are known to meet this c
dition @4#. However, this condition can be easily corrupted
real world data where noise unrelated to the physical proc
enters the measurement. We demonstrate the importanc
the integrated approach in the proper diagnosis of proce
with H,1/2. We also discuss a common way in which
misjudgment of long range anticorrelation can occur. In t
regard we identify the three contributing factors:~1! the vari-
able being recorded is not fundamental~see below!, ~2! the
data set is short, and~3! only a random walk type of analysi
is employed.

A. Condition for HË1Õ2

Refer to Eq.~9!. Suppose thatC(s);s2b. When 0,b
,1, we showed that both the second and third terms in
above equation diverge and scale withn as;n22b. There-
fore, ^Rn

2& scales withn as;n22b for largen, and this leads
to H.1/2 @cf. Eq. ~14!#. For b.2 @that is, for anyC(s) that
decays faster thanC(s);s22], both sums in the above equa
tion converge, and we generally obtainH51/2.

Thus the only remaining range ofb is 1,b,2. For such
b the sum(s51

` C(s) is finite. ~Note that, strictly speaking
this type of process can no longer be termed a long mem
process based on the definition in Sec. II A. But, since it h
the potential of givingH,1/2, we will still use the term
‘‘long range correlation.’’! Therefore the first two terms
scale as;n1. The sum(s51

n21sC(s) in the third term is
evaluated to be

(
s51

n21

sC~s!;n22b, ~22!

where (22b),1. This means that the rate of divergence
the third term is slower than the first two terms. Therefore
the largen limit ^Rn

2&;n, we would still observeH51/2.
The only situation when this will not happen occurs wh
the following equation is precisely satisfied:

s212(
s51

`

C~s!5 (
s52`

s5`

C~s!50. ~23!
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4998 PRE 61GOVINDAN RANGARAJAN AND MINGZHOU DING
In this case the first two terms in̂Rn
2& drop out giving

^Rn
2&;n22b. Therefore, we obtainH5(22b)/2, which is

smaller than 1/2.
It is clear that forH,1/2 to occur the process must me

a very stringent condition@Eq. ~23!#. It has been shown tha
many physical systems satisfy this condition@4#. But, when
such a physical system is subject to measurement, noise
inevitable factor. For the noisy measurement it is likely th
the equality in Eq.~23! no longer holds. The implication is
that in the long run one may observeH51/2, and therefore
not be able to correctly identify the underlying process.
what follows we show that the integrated approach ad
cated in Sec. II is again an essential tool in revealing str
clues as to the true nature of the physical process. Moreo
we will show that the integrated approach is also indispe
able in guarding against misjudgment ofH,1/2 for systems
where this is not true.

B. Integrated approach to noisyHË1Õ2 data

For a genuineH,1/2 process, Eq.~14! still holds, albeit
a will be a negative number. We generated af 2a process
artificially using the procedure in Sec. II B 1. A value ofa
520.5 was used. When the data are subject to resc
range analysis, we obtain a value ofH50.28 @see Fig.
11~a!#. The spectral analysis gives a power law curve w
a520.5 as expected@Fig. 11~b!#. We note the results of the

FIG. 11. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a true long range correlated proce
with a520.5, variance 0.25, and a long data set~8192 points!. ~b!
Spectral density of the same data.
an
t
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er,
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ed

rescaled range and spectral analyses are mutually consi
in this case, since the application of Eq~14! gives aH value
of 0.25.

Now we consider the effect of additive noise on the sa
data set. When noise is added, Eq.~23! is no longer strictly
satisfied. Hence we would expect the Hurst exponent of
process to asymptotically approachH50.5 for long data
sets. This is borne out by our numerical simulations. We s
with the true long range correlated process described ab
(H50.25), and add Gaussian white noise to the data w
variance 0.01. This simulates the effect of noisy measu
ment in experiments. Figure 12~a! shows the results of res
caled range analysis applied to the above process
262, 144 points. We see thatH asymptotically tends to 0.5
As the variance of the added noise is increased, theH50.5
value is reached even faster. However, all is not lost. T
integrated approach allows us to approximately recover
true process hidden by the noise. We start by truncating
data set which prevents the asymptotic limit forH being
reached. Figs. 12~b! and 12~c! display the results of applying
the integrated approach to the truncated data set with 8
points@all other parameter values remain the same as in
12~a!#. We obtain anH value of 0.34 from rescaled rang
analysis, and the spectral analysis is consistent with
value. This consistency tells us that the data represent a
long range correlated process~theH value obtained is highe
than that for the true process because of the added noise.! We
comment that this consistency is in marked contrast to w
was observed for the AR~1! process withl520.9 ~see Sec.
II B !. There, even though theH value was 0.33 for small data
sets and rose toH50.5 for large data sets, the results
spectral analysis were completely inconsistent with this. T
led us to conclude that there was no true long range co
lated process in that example. The above examples a
demonstrate that the integrated approach is very usefu
revealing the true nature of a process represented by
series data.

C. Possible causes for false identification ofHË1Õ2

In the literature one often comes across reports wh
analysis of real world data, using the method of random w
alone, yieldH,1/2. The examples in Sec. II B show th
shortcoming of using just one type of analysis method. Up
further examination we realize that there is a common thr
in these reports that has to do with the fact that the d
analyzed do not come from a fundamental process which
discuss below.

1. Notion of a fundamental process and data differencing

Consider a stationary process$jk%. By definition a sta-
tionary process is not diffusive. In other words,^jk

2& is a
constant. Consider the partial sumRn5(k51

n jk . If ^Rn
2& in-

creases withn, that is,Rn is a diffusive process, we say tha
$jk% is a fundamental process. If the time series data com
from a fundamental process are subject to random walk t
of analysis such as the rescaled range analysis, it can
trusted to correctly assess the corresponding Hurst expon
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A differenced process refers to a process$hk% which is
obtained byhk5jk112jk . Clearly,$hk% is not a fundamen-
tal process, since its partial sums give$jk% which is not
diffusive. This means if we input data from a differenc
process into the rescaled range type of random walk anal
we will not be able to assess the correlation properties of
original process, and possibly even be fooled by the app
ance of the rescaled range plot~see below!.

Differenced data can arise in practice in a number
ways. First, differencing is a commonly applied techniq

FIG. 12. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a true long range correlated proce
corrupted by added white noise witha520.5, variance 0.25, and
262 144 points. The variance of added white noise is 0.01.~b! Same
as above but with 8192 points.~c! Spectral density of the sam
process with 8192 points.
is,
e
r-

f

for trend removal@11#. Second, the measured physical va
able is a derivative of another fundamental variable. We
lieve that the use of differenced data, in combination with
rescaled range type of analysis, underlies some of the
ported cases ofH,1/2. Below we demonstrate this point b
examples.

2. Gaussian white noise

Consider a Gaussian white noise process$jk%. The partial
sums of this process yield a diffusive Brownian motion w
a Hurst exponent equal to 1/2. Suppose what is being m

FIG. 13. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for a differenced Gaussian white nois
process with 1024 data points.~b! Same as above but with 40 00
data points.~c! Spectral density of the data in~a!.
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sured is notjk but the differenced variablehk5jk112jk.
To see the effect of this, a Gaussian white noise process$jk%
with zero mean and variance 0.25 was first generated. If
rescaled range analysis is performed on$hk%, the result is
shown in Fig. 13~a!. The data length is 1024 points. If w
force a linear fit to the end part of the log-log plot, we o
serve a Hurst exponent equal to about 0.12. However,
exponent is not a reflection of the process but is caused
the finite size of the data set. If we analyze a much lon

FIG. 14. ~a! Log-log plot of the rescaled range statisticQ(s)

against the window sizes for the velocity variableẋ of a Langevin
process withl55 and 250 data points.~b! Same as above but with
60 000 data points.~c! Log-log plot of the rescaled range statist
Q(s) against the window sizes for the position variablex of a
Langevin process withl55 and 250 data points.
e

is
by
r

data set~40 000 points!, we observe that the slope of 0.1
that we had seen earlier is only a transient effect@see Fig.
13~b!#. It can be shown that the true slope goes to zero as
time lags increases.

The H value of 0.12 obtained for the differenced data s
of 1024 points can also be easily rejected by the integra
approach. Subjecting the same data set to the spectral a
sis yieldsa521.95@Fig. 13~c!#. This value is totally incon-
sistent with thea520.76 predicted by Eq.~14! based on
H50.12. This inconsistency should be used as a clue
further examine the nature of the data set.

3. Langevin equation

In this section, we consider a more physical example—
Langevin equation. The Langevin process that we studie

ẋ52lx1j~ t !, ~24!

where j(t) is a white noise process with zero mean a
variance 0.25 andl55. The above stochastic differentia
equation was integrated using an efficient algorithm@19#.

Suppose that the variable being measured is the velo
ẋ, and successive values ofẋ by the numerical integration
scheme constitute our data set. The rescaled range ana
applied to a short data set of 250 points yields a Hurst ex
nent equal to 0.18@see Fig. 14~a!#. On the other hand, if the

FIG. 15. ~a! Log-log plot of the rescaled range statisticQ(s)
against the window sizes for the interresponse interval time serie
data from the finger tapping experiment.~b! Spectral density of the
same data.
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size of the data set is increased to 60 000 points, the valu
H becomes nearly zero for larges values@Fig. 14~b!#.

Theoretically, it can be shown thatx, after an initial tran-
sient, is a stationary fundamental process. To demons
this we apply rescaled range analysis to the values ofx. In
this case, even for short data sets, we obtain a value oH
close to 0.5@see Fig. 14~c!#, as predicted by theory. Th
result seen in Fig. 14~a! is therefore a consequence ofẋ
being an overdifferenced variable.

4. Finger tapping data

Generally, we suggest that when aH,1/2 is obtained
from a random walk type of analysis, one should also p
form a spectral analysis on the same data set. If the resu
inconsistent with Eq.~14!, then one should conclude that th
data set is not from a fundamental process and partial s
of this data set should instead be considered for an ana
of the correlation properties.

As an example, we again consider the finger tapping
periment@7# described in Sec. II B. But now we analyze th
interresponse intervals~IRI’s! instead of the synchronizatio
errors. The IRI’s can be obtained from the synchronizat
error data by differencing it@7# and is itself an importan
physiological variable. Rescaled range analysis of this
time series data appears to give a value ofH50.25@see Fig.
15~a!#. But this is an artifact of the finite data size. This c
be seen by performing a spectral analysis on the same
data@see Fig. 15~b!#. We see that this gives results incons
tent with Eq.~14!. Thus theH value obtained in Fig. 15~a! is
a consequence of the IRI being an overdifferenced varia
combined with finite data size and only one type of meth
of
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IV. SUMMARY

Suppose that the autocorrelation functionC(s) for a sta-
tionary process scales withs as C(s);s2b. Depending on
the values ofb and the behavior of(s52`

s5` C(s) we have the
following classification for the process:~1! if 0 ,b,1, we
have 1/2,H,1, and the process is said to have long ran
persistent correlation or long memory@9#. ~2! If 1 ,b,2
and(s52`

s5` C(s)50, we have 0,H,1/2 and the process is
said to have long range antipersistent correlation or antic
relation. ~3! If b.1 and(s52`

s5` C(s)Þ0 we haveH51/2,
and the process is said to have short range correlation.
worth noting in this classification processes with 1,b,2
can be classified as either having long range anticorrelat
or short range correlation depending whether(s52`

s5` C(s) is
zero. We preserve the long range anticorrelation termin
ogy, in keeping with the traditional naming of such pro
cesses. The main goal of this work has been to demonst
the importance of the integrated approach, combining b
spectral and random walk analyses, to the assessment of
relation behavior in time series data. We showed that
consistent use of both spectral and random walk analyse
not only essential in revealing the true nature of a giv
process, it can also prevent the false conclusion of long ra
correlation resulting from artifacts or wrong measureme
variables combined with just one type of analysis method
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